

Memory management for big data

Gaël Thomas, professor at Telecom SudParis

I'm a researcher in system

2015 – today: Professor at Telecom SudParis/Paris Language runtimes, multicore, parallelism, HPC, hypervisors

2006 – 2015: Ass. prof. at UPMC Sorbonne Univ./Paris Language runtimes, multicore, parallelism

- 2005 2006: PostDoc at LIG/Grenoble Distributed systems
- 2001 2005: PhD at UPMC Sorbonne Univ./Paris Design and implementation of Java virtual machines

And I like doing systems!

```
X gthomas@archlinux:~/research/vrack/src
  ACPI_OBJECT ob_;;
  parms.Count = 1:
  parms.Pointer = &obj;
  obj.Type = ACPI_TYPE_INTEGER;
  obj.Integer.Value = 1;
  if(ACPI_FAILURE(s = AcpiEvaluateObject(ACPI_ROOT_OBJECT, (char*)"_PIC", &parms,\
 0)))
    panic("unable to switch to acpi apic mode (error %d)\n", s);
void ACPIDriver::add(Device* parent, Domain* domain, void* info) {
  printk("Attaching ACPI bus to ");
  parent->printName();
 printk("\n");
  /* inform acpi that we are using IO-Apic */
 ACPIDevice* dev = new ACPIDevice(parent, domain);
  enterAcpiApicMode();
  void* res:
 AcpiWalkNamespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 100, visitDescending, vis
 UU-:---F1 acpi-driver.cc
                               6% (38.43)
                                             Git:master
                                                         (C++/l Abbrev)
     file: ~/research/vrack/src/drivers/acpi/
```


Memory management for big data

Data, data, data

- Amount of data increases exponentially
 - Web (facebook, gmail, google, Amazon...)
 - Devices (Waze, healthcare monitoring, banking...)
 - Science (Large Hadron Collider...)

Data analytics

Analyzing this data is a key ingredient in many domains Market analysis, banking, scientific computations...

Analyzing big data requires efficient and powerful computing infrastructures

To illustrate, the Large Hadron Collider generates 1 PB each day (~ 1,000 hard drives)

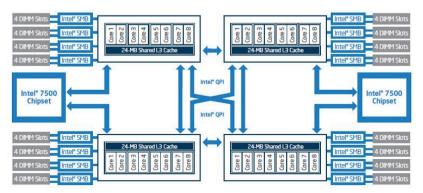
But achieving performance is difficult (even with data analytics algorithms of genius)

Because infrastructures are complex...

Data centers are geo-distributed

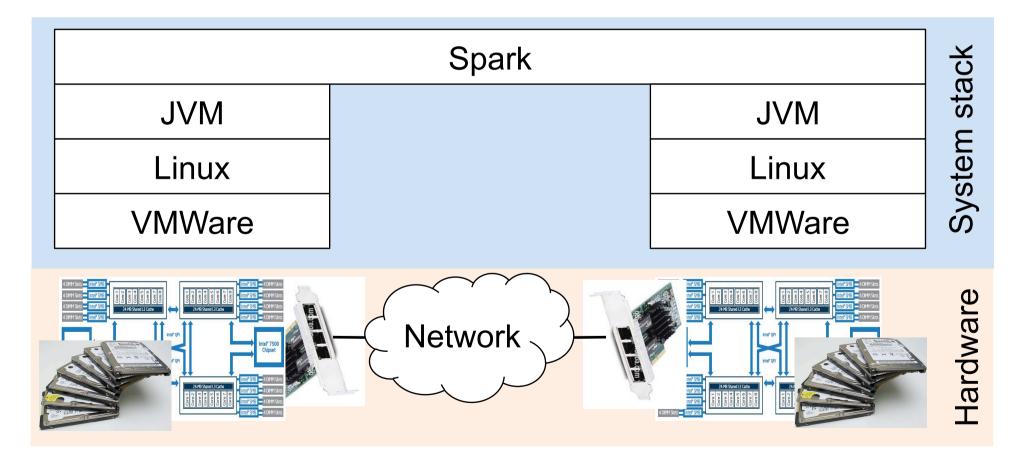
Each data center contains a complex computers infrastructure

Each computer is itself a distributed network



... and system stacks are complex

A typical system stack includes more than 10⁷ lines of code



How can we achieve better efficiency?

By building efficient system stacks for big-data analytics ©

A typical research work

Work of Lokesh Gidra (defense the 2015 28th september) Now research engineer at HP labs at Palo Alto, CA, USA



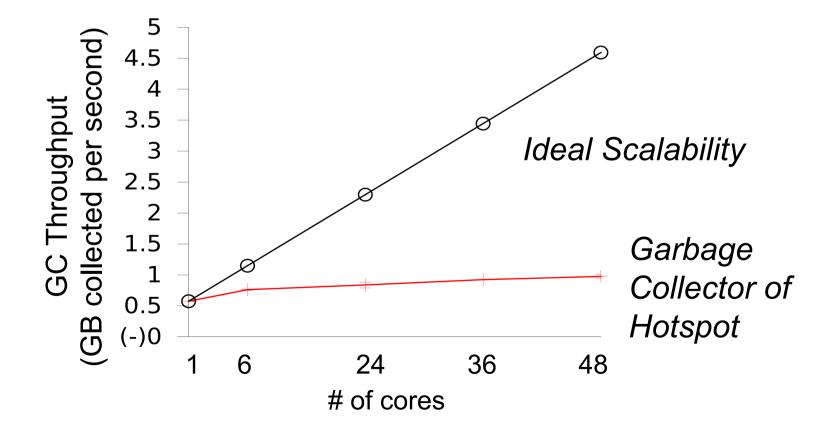
Big data and memory management

Page rank computation with Spark on 10⁸ nodes

Memory management of the JVM on a modern 48-core takes roughly 60% of execution time while it takes less than 10% on a 4-core (heap size is 40GB)

The problem: the GC does not scale

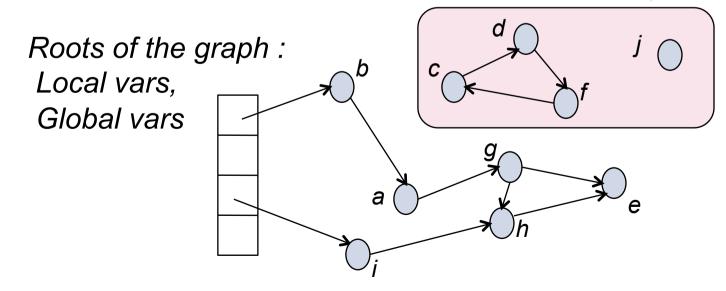
Page rank computation with Spark on 10⁸ nodes



Background: Java garbage collector

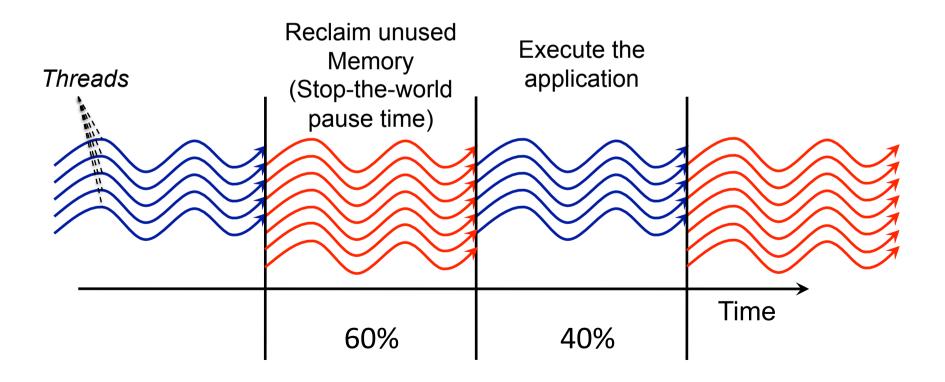
- Automatically reclaims unused objects by considering the Java heap as a directed graph
 - Nodes are the Java objects
 - Edges are the Java reference
 - Traverse the graph in order to find live objects

Unreachable objects



Background: Java garbage collector

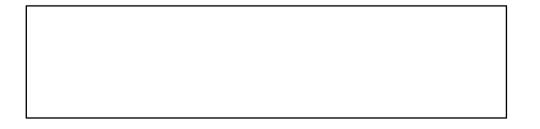
- At each time, a Java process is either
 - Executing the application
 - Reclaiming unused memory (GC pause)



Baseline GC: Parallel Scavenge

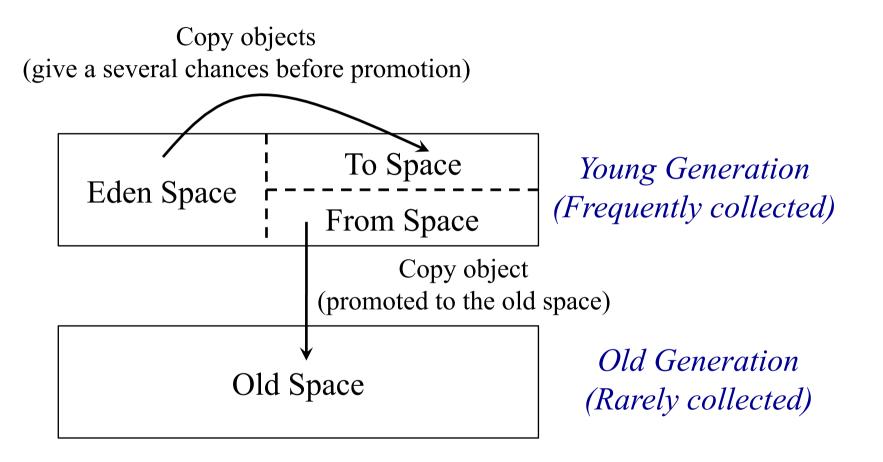
Generationnal hypothesis: objects die young

Young Generation (Frequently collected)

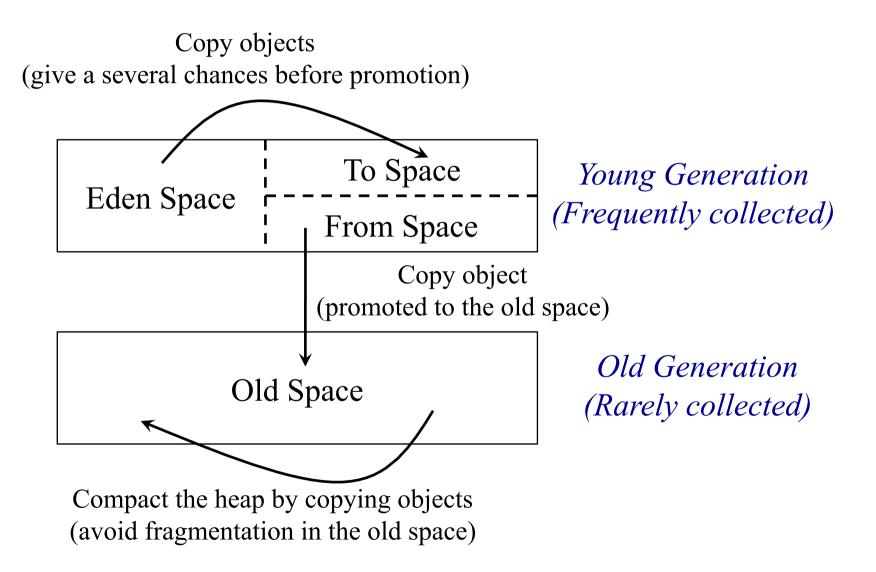


Old Generation (Rarely collected)

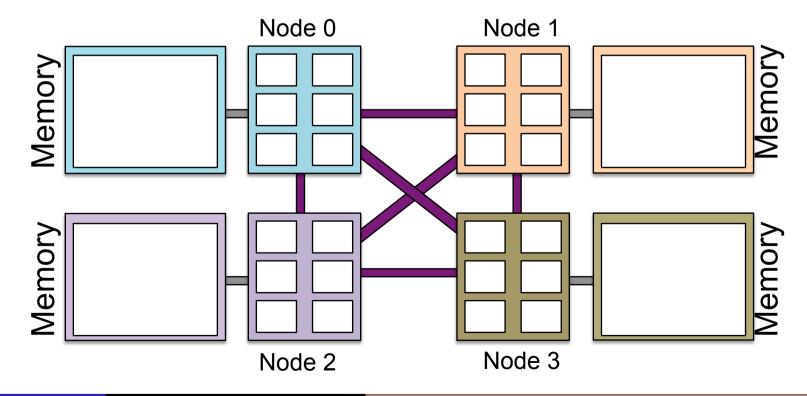
Baseline GC: Parallel Scavenge



Baseline GC: Parallel Scavenge

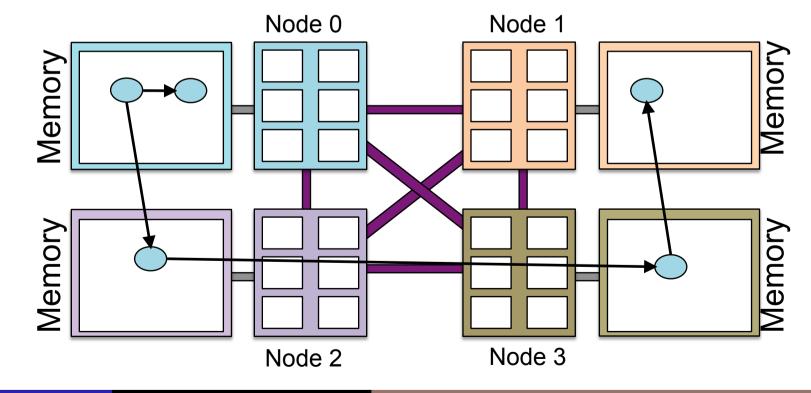


A modern multicore is a small distributed system



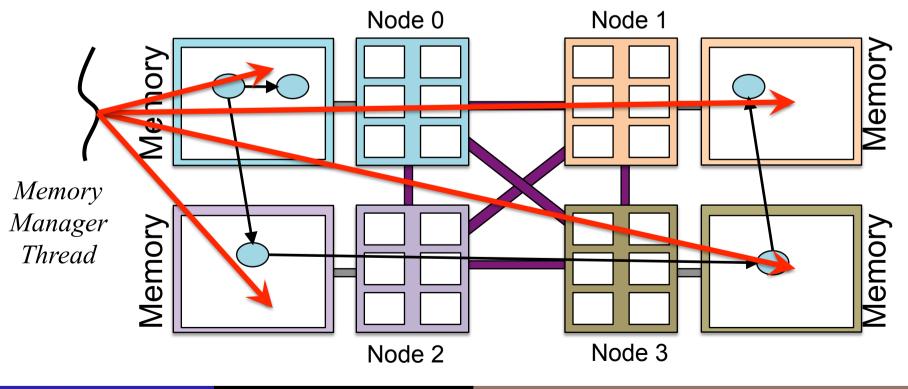
A modern multicore is a small distributed system

Application silently creates inter-node references



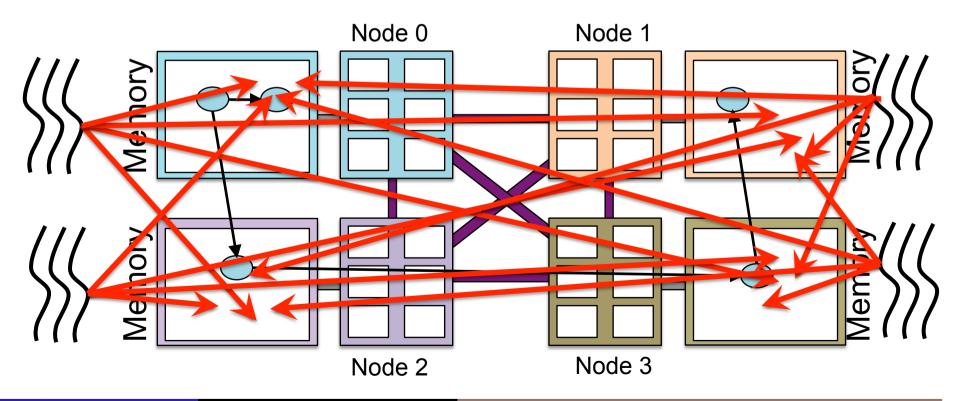
A modern multicore is a small distributed system

Threads of the memory manager perform random accesses



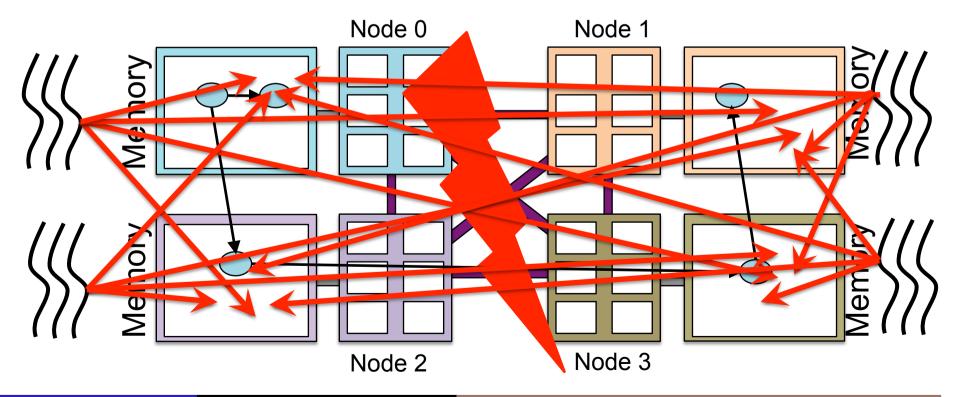
A modern multicore is a small distributed system

The memory manager uses many threads

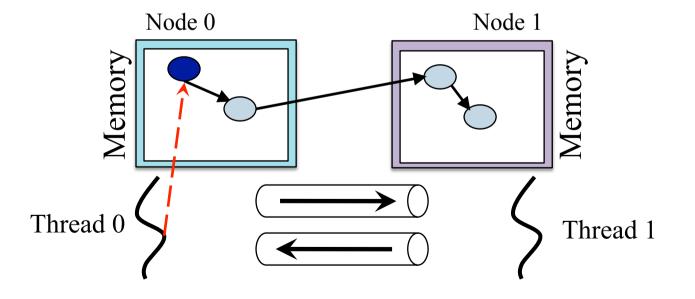


A modern multicore is a small distributed system

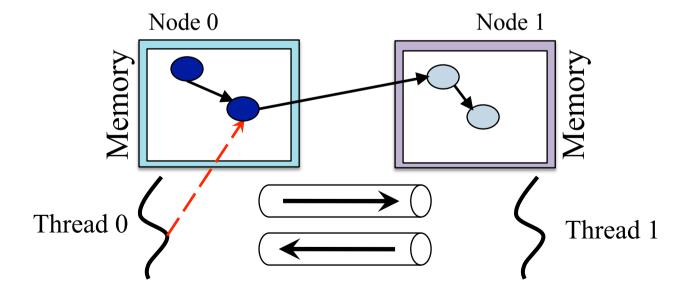
And eventually the network between the nodes saturates ⇒ drastically slows down memory access time



NUMAGiC: a memory manager with a distributed design



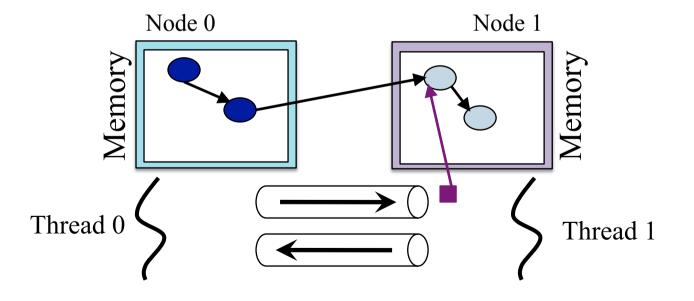
NUMAGiC: a memory manager with a distributed design



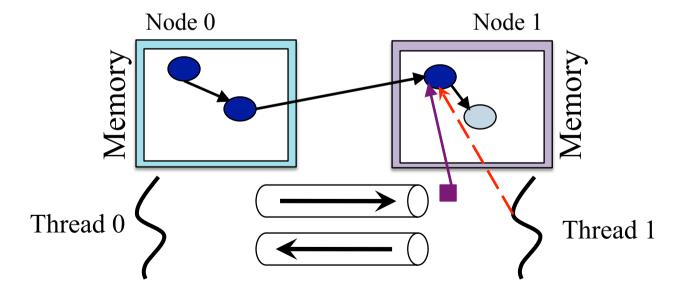
NUMAGiC: a memory manager with a distributed design



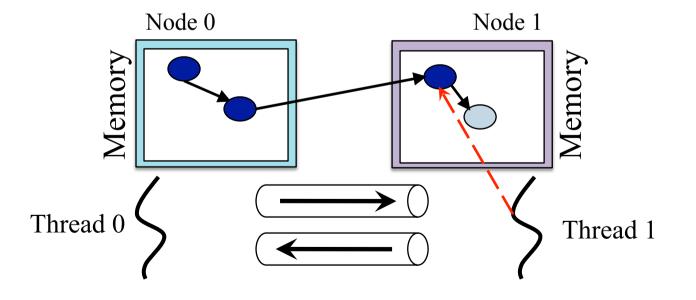
NUMAGiC: a memory manager with a distributed design



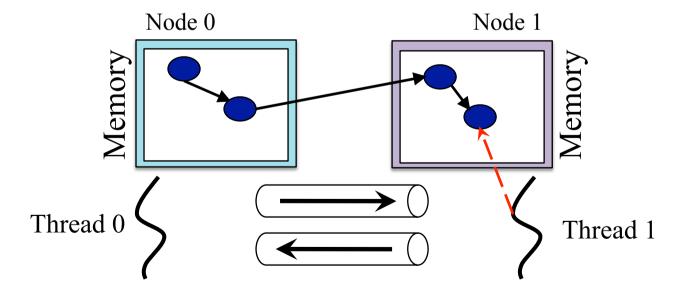
NUMAGiC: a memory manager with a distributed design



NUMAGiC: a memory manager with a distributed design



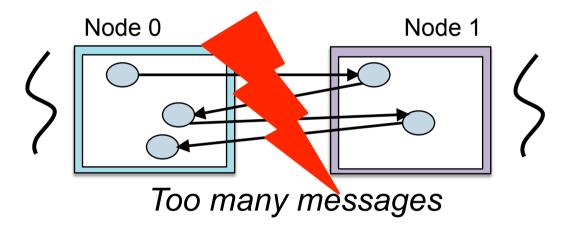
NUMAGiC: a memory manager with a distributed design



NUMA-friendly placement heuristics

Problem: 1 message is more costly than 1 remote access

=> Inter-node references must be minimized



Observation: a thread mostly connects objects it has allocated

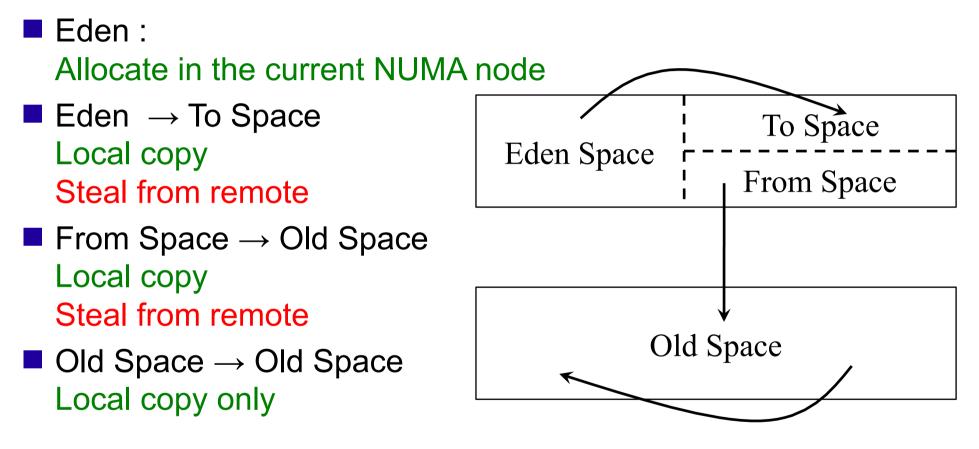
Heuristics: let objects allocated by a thread on its node side effect: improve memory access locality for the application

NUMA-friendly placement heuristics

But "Let objects allocated by a thread on its node" raises a problem

- If only one node allocate the memory,
- All the GC threads accesses the allocation node
- \Rightarrow the node collapse

NUMA-friendly placement heuristics



Local copy ⇒ prevents remote references Steal from remote ⇒ balance memory on all the nodes (important in order to avoid overloaded nodes)

33 11/10/16

Adaptive algorithm

Problem: strictly avoiding remote access degrades parallelism Node 0
Node 1

Node 1 idles while node 0 collects its memory

Happen often because we minimize inter-node references!

Solution: adaptive algorithm

- Local mode: send messages when not idling
- Thief mode: steal and access remote objects when idling

Experiments – hardware setting

Amd48 : AMD Magny Cour with

- 8 nodes
- 48 threads
- 256 GB of RAM

Intel80 : Xeon E7-2860 with

- 4 nodes
- 160 threads
- 512 GB of RAM

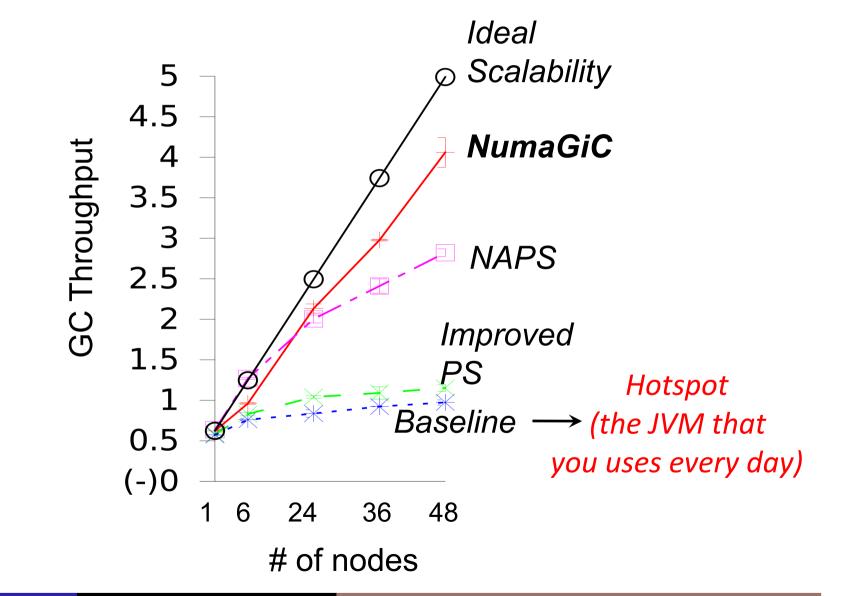
Experiments – software setting

Name	Description	Heap Size
		Amd48 Intel80
Spark	In-memory map-reduce (page rank computation)	110 to 250 to $160GB$ $350GB$
Neo4j	Object graph database (page rank computation)	$ \begin{array}{c c} 110 \text{ to} \\ 160 \text{GB} \end{array} \begin{array}{c} 250 \text{ to} \\ 350 \text{GB} \end{array} $
SPECjbb2013	Business-logic server	24 to 40GB // 24 to 40GB
SPECjbb2005	Business-logic server	4 to 8GB 12GB
	1 billions node from the Friendster dataset	The 1.8 billions node of the Friendster dataset

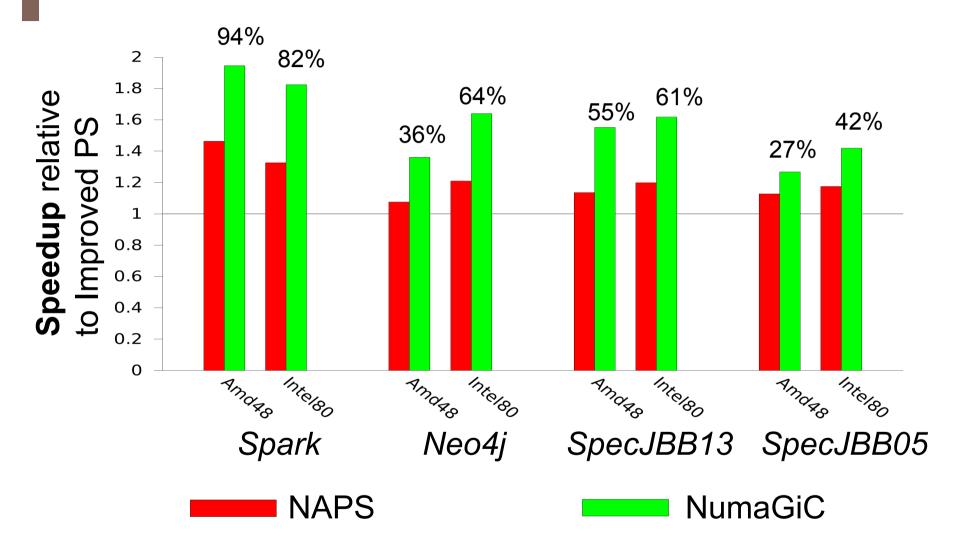
GC Throughput from x2 to x5

NumaGiC -X — Improved PS NAPS - - [-] -Spark SpecJBB13 SpecJBB05 Neo4j on GC Throughput Amd48 2 24 8^{110}_{3} on Intel80 **Heap Sizes** 11/10/16 Gaël Thomas Memory Management for big-data

NUMAGiC scalability



Improvement for the applications



Heap size of 160GB on Amd48 and 350GB on Intel80

To take away

Performance of big-data analytics relies on GC performance

- Memory access locality has huge effect on GC performance
- Enforcing locality can be detrimental for parallelism in GCs
- No big difference between Intel and Amd NUMA architectures

To take away

Performance of big-data analytics relies on GC performance

- Memory access locality has huge effect on GC performance
- Enforcing locality can be detrimental for parallelism in GCs
- No big difference between Intel and Amd NUMA architectures

Thank You 🕲

42 11/10/16