

 Connect

explained

Vladimir Dzhuvinov

Email: vladimir@dzhuvinov.com : Twitter: @dzhivinov

mailto:vladimir@dzhuvinov.com

 Married for 15 years

… to Java

C

Python

 JavaScript

 JavaScript on a bad day

So what is
OpenID Connect?

OpenID Connect is a new internet
standard for

Single
Sign-On

(SSO)

Identity
Provision

(IdP)

OpenID Connect supports

web
clients

mobile / native
clients

OpenID Connect is good for

consumer
apps

social
apps

enterprise
apps

mobile
apps

OpenID Connect is backed by

Google Microsoft

Aol Salesforce

eBay
PayPal

… us and
many others

1. Need to authenticate user?

2. Send user to OpenID provider
 (via browser / HTTP 302 redirect)

3. Get Identity (ID) token back

OpenID Connect distilled

The key OpenID Connect artefact

Client apps receive an ID token from the OpenID Provider

ID Token

asserts the user's identity
(user ID)

ID token

Resembles the concept of an
identity card, in a standard digital
format that can be verified by
clients.

● Asserts the user's identity.

● Specifies the issuing authority (the
IdP).

● May specify how (strength) and when
the user was authenticated.

● Is generated for a particular audience
(client).

● Has an issue and an expiration date.

● May contain additional subject details
such as the user's name, email
address and other profile information.

● Is digitally signed, so it can be verified
by the intended recipients.

● May optionally be encrypted for
confidentiality.

ID token internals

● Encoded as a JSON Web
Token (JWT).

● The claims about the subject
are packaged in a simple
JSON object.

● Digitally signed typically with
the provider's private RSA
key or a shared secret
(HMAC) issued to the client
during registration.

● Is URL-safe.

{
 "iss" : "https://c2id.com",

 "sub" : "alice",

 "aud" : "s6BhdRkqt3",

 "nonce" : "n0S6_WzA2Mj",

 "exp" : 1311281970,

 "iat" : 1311280970,

 "auth_time" : 1311280969,

 "acr" : "c2id.acr.hisec",

 "amr" : ["pwd", "otp"]
 }

Encoded ID token

eyJhbGciOiJSUzI1NiIsImtpZCI6IjFlOWdkazcifQ.ewogImlzc

yI6ICJodHRwOi8vc2VydmVyLmV4YW1wbGUuY29tIiwKICJzdWIiOiAiMjQ4Mjg5

NzYxMDAxIiwKICJhdWQiOiAiczZCaGRSa3F0MyIsCiAibm9uY2UiOiAibi0wUzZ

fV3pBMk1qIiwKICJleHAiOiAxMzExMjgxOTcwLAogImlhdCI6IDEzMTEyODA5Nz

AKfQ.ggW8hZ1EuVLuxNuuIJKX_V8a_OMXzR0EHR9R6jgdqrOOF4daGU96Sr_P6q

Jp6IcmD3HP99Obi1PRs-cwh3LO-p146waJ8IhehcwL7F09JdijmBqkvPeB2T9CJ

NqeGpe-gccMg4vfKjkM8FcGvnzZUN4_KSP0aAp1tOJ1zZwgjxqGByKHiOtX7Tpd

QyHE5lcMiKPXfEIQILVq0pc_E2DzL7emopWoaoZTF_m0_N0YzFC6g6EJbOEoRoS

K5hoDalrcvRYLSrQAZZKflyuVCyixEoV9GfNQC3_osjzw2PAithfubEEBLuVVk4

XUVrWOLrLl0nx7RkKU8NXNHq-rvKMzqg

Cool ID token uses

● Simple stateless session management – no
need to store sessions in memory / on disk

● May be passed to 3rd parties to assert the
user's identity

● May be exchanged for an access token at the
token endpoint of an OAuth 2.0 authorisation
server. This feature has uses in distributed
and enterprise applications. See RFC 7523.

Using the OAuth 2.0
protocol flows

How to obtain an ID token?

The OAuth 2.0 flows
Start

Your token!!!

Choose your flow

● Authorisation code flow

– for typical web and mobile apps

– the client is authenticated

– tokens retrieved via backchannel

● Implicit flow

– for JavaScript applications that run in the browser

– the client is not authenticated

– tokens returned via front-channel, revealed to browser

● Hybrid flow -

– allows app front-end and back-end to receive tokens independently

– rarely used

http://openid.net/specs/openid-connect-core-1_0.html#Authentication

http://openid.net/specs/openid-connect-core-1_0.html#Authentication

The OpenID auth request
(code flow)

Send user to OpenID provider with auth request:

https://openid.provider.com/authorize?
 response_type=code
 &scope=openid
 &client_id=s6BhdRkqt3
 &state=af0ifjsldkj
 &redirect_uri=https%3A%2 %2Fclient.example.org%2Fcb

The OpenID auth response
(code flow)

On successful auth the OpenID provider will redirect the
browser back to the client with an authorisation code:

https://client.example.org/cb?
 code=SplxlOBeZQQYbYS6WxSbIA
 &state=af0ifjsldkj

The OpenID auth response
(code flow)

If authentication failed the OpenID provider may return
an error code:

https://client.example.org/cb?
 error=access_denied
 &state=af0ifjsldkj

Exchange code for ID token
(code flow)

Client makes back channel request to exchange code
for ID token. Note that the client authenticates itself to
the server here!

POST /token HTTP/1.1
Host: openid.provider.com
Content-Type: application/x-www-form-urlencoded
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

grant_type=authorization_code
 &code=SplxlOBeZQQYbYS6WxSbIA
 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb

Exchange code for ID token
(code flow)

Finally, we get our ID token! But what's this access
token?

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache

{
 "access_token": "SlAV32hkKG",
 "token_type": "Bearer",
 "refresh_token": "8xLOxBtZp8",
 "expires_in": 3600,
 "id_token": "eyJhbGciOiJSUzI1NiIsImtpZCI6IjFlOWdkazc..."
}

UserInfo

{
 "sub" : "alice",
 "name" : "Alice Adams",
 "given_name" : "Alice",
 "family_name" : "Adams",
 "email" : "alice@wonderland.net",
 "email_verified" : true,
 "phone_number" : "+359 (99) 100200305",
 "profile" : "https://c2id.com/users/alice",
 "ldap_groups" : ["audit", "admin"]
 }

OpenID Connect defines an extensible JSON schema for releasing

consented user details to client applications

mailto:alice@wonderland.net

Requesting UserInfo with the
OpenID auth request

Send user to OpenID provider with auth request:

https://openid.provider.com/authorize?
 response_type=code
 &scope=openid%20profile%20email
 &client_id=s6BhdRkqt3
 &state=af0ifjsldkj
 &redirect_uri=https%3A%2 %2Fclient.example.org%2Fcb

Access token

Resembles the concept of a
physical token or ticket. Permits
the bearer access to a specific
resource or service. Has typically
an expiration associated with it.

● OAuth 2.0 access tokens are
employed in OpenID Connect
to allow the client application to
retrieve consented user details
from a UserInfo endpoint.

● The server may extend the
access token scope to allow
the client access to other
protected resources and web
APIs.

● The client treats the access
token as simple opaque string
to be passed with the HTTP
request to the protected
resource.

UserInfo request with access
token

Simply include the token in the authorisation header
using the Bearer schema (RFC 6750).

GET /userinfo HTTP/1.1
Host: server.example.com
Authorization: Bearer SlAV32hkKG

UserInfo response

The response from the UserInfo endpoint, containing
the consented details (claims / assertions) about the
end-user:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "sub": "248289761001",
 "name": "Jane Doe",
 "given_name": "Jane",
 "family_name": "Doe",
 "preferred_username": "j.doe",
 "email": "janedoe@example.com",
 "picture": "http://example.com/janedoe/me.jpg"
}

The 2 key OpenID Connect
artefacts

ID Token

asserts the user's identity
(user ID)

Access Token

optional, to retrieve
consented UserInfo

The OpenID Connect framework

● User identity is asserted by means of
JSON Web Tokens (JWT)

● Clients use standard OAuth 2.0 flows
to obtain ID tokens

● Mantra: Simple clients, complexity
absorbed by the server

● Any method for authenticating users –
LDAP, tokens, biometrics, etc.

● JSON schema for UserInfo

● Supports optional provider discovery,
dynamic client registration and
session management.

● Extensible to suit many use cases.

● Federation is possible.

OpenID Connect

OAuth 2.0
JOSE

+
JWT

OpenID Connect provider
endpoints

● Core provider endpoints:

– Authorisation endpoint

– Token endpoint

– UserInfo endpoint

● Optional provider endpoints:

– WebFinger endpoint

– Provider metadata URI

– Provider JWK set URI

– Client registration endpoint

– Session management endpoint

HTTP Endpoints

Optional endpoints

● WebFinger: enables dynamic discovery of the OpenID Connect provider
for a user based on their email address.

● Provider configuration URI: well-known URI returning endpoint and other
provider information such as optional capabilities; the client applications
can use it to configure their OpenID Connect requests to the provider.

● Provider JWK set URI: JSON document containing the provider's public
(typically RSA) keys in JSON Web Key (JWK) format; these keys are used
to secure the issued ID tokens and other artefacts.

● Client registration: enables client applications to register dynamically, then
update their details or unregister; registration may be open (public).

● Session management: enables client applications to check if a logged in
user has still an active session with the OpenID Connect provider; also to
signal logout.

The future: dynamic discovery +
client registration

alice@wonderland.net

ID token for Alice

The specifications

● OpenID Connect: http://openid.net/connect

● OAuth 2.0 (RFC 6749): http://tools.ietf.org/html/rfc6749

● OAuth 2.0 Bearer token (RFC 6750): http://tools.ietf.org/html/rfc6750

● JSON Web Token: http://tools.ietf.org/html/rfc7519

● JSON Web Signature: http://tools.ietf.org/html/rfc7515

● JSON Web Encryption: http://tools.ietf.org/html/rfc7516

● JSON Web Key: http://tools.ietf.org/html/rfc7517

Thank You!

Q + A

