
Mahout 102
Clustering



Goal for Today

• Quick Introduction To Clustering 

• How does it work in Practice 

• How does it work in Mahout 

• Overview of Mahout Algorithms
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clustering applications

• Fraud: Detect Outliers 

• CRM : Mine for customer segments 

• Image Processing : Similar Images 

• Search : Similar documents 

• Search : Allocate Topics



K-Means

Guess an initial placement for centroids

Assign each point to closest Center

Reposition Center

MAP
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clustering challenges

• Curse of Dimensionality 

• Choice of distance / number of parameters 

• Performance 

• Choice # of clusters



Mahout Clustering 
Challenges

• No Integrated Feature Engineering Stack:  
Get ready to write data processing in Java 

• Hadoop SequenceFile required as an input 

• Iterations as Map/Reduce read and write to 
disks: Relatively slow compared to in-memory 
processing



Data Processing

Data Processing Vectorized  
Data

Image

Voice

Log / DB



Mahout K-Means on Text 
Workflow

mahout 
seqdirectory

mahout 
seq2parse

mahout 
kmeans

Text Files

Mahout Sequence Files

Tfidf Vectors

Clusters



Mahout K-Means on 
Database Extract Worflow

org.apache.mahout.clustering.conv
ersion.InputDriver

mahout 
kmeans

Database Dump (CSV)

Mahout Vectors

Clusters



Convert a CSV File to 
Mahout Vector

• Real Code would have 

• Converting Categorical 
variables to dimensions 

• Variable Rescaling 

• Dropping IDs (name, 
forname …)



Mahout Algorithms
Parameters Implicit Assumption Ouput

K-Means K (number of clusters) 
Convergence Circles Point -> ClusterId

Fuzzy K-Means K (number of clusters) 
Convergence Circles Point -> ClusterId * , 

Probability
Expectation 
Maximization

K (Number of clusterS) 
Convergence Gaussian distribution Point -> ClusterId*, Probability

Mean-Shift 
Clustering

Distance boundaries, 
Convergence Gradient like distribution Point -> Cluster ID

Top Down 
Clustering Two Clustering Algorithns Hierarchy Point -> Large ClusterId, Small 

ClusterId
Dirichlet 
Process Model Distribution Points are a mixture of 

distribution Point -> ClusterId, Probability 

Spectral 
Clustering - - Point -> ClusterId

MinHash 
Clustering

Number of hash / keys 
Hash Type High Dimension Point -> Hash* 



Comparing Clustering
KMeans Dirichlet Fuzzy KMeans

MeanShift



T2

Canopy Optimization
T2

T1

Surely in Cluster
Surely not in clusterPick a random point 


