
Machine Learning
A few notes from the battlefield

Paris JUG
November 12th, 2013

Thomas Cabrol
Chief Data Scientist at Dataiku

@ThomasCabrol



Data Scientist is the sexiest 
job of the 21st century ©

??



You’ll use Machine Learning 
to solve cool problems and 
build (new) products like...



• Find groups of customers who share the same behavior

• Build cross/up sell predictive models

• Reduce churn

• Build recommendation engine

• Personalize search

• Optimize ad placements

• Create credit scoring engines

• Detect fraud

• Predict machine failures

• Design new drugs and look for new cures

• Build Siri or Watson !

• Create self-driving cars !!

• Uncover galaxies !!!

And an endless list of applications with virtually all fields !



They all share the same idea

Make our computers learn patterns 
from known data and build systems 
that can automatically decide what 
to do with new data.



• Supervised machine learning

• model p(y|x) => given a set of «features», learn to predict the value of x (i.e 
given the size, location and number of rooms of a flat, predict its price)

• Classification is for the case when you want to predict a discrete value (Yes/
No), and Regression when you want to precit a numeric value.

• Unsupervised machine learning

• model p(x) => there is no labeled data to predict, only a set of features from 
which you want to uncover underlying structure

• Clustering (find groups of observations that share similar patterns) 
dimensionality reduction (reduce the set of initial features into a smaller subset 
of components)

Machine Learning tasks often fall 
within one of these 2 categories



So what does it look like in 
practice ?



Well-posed 
problem

Get raw 
data

Get good-
looking data

Keep 
holdout 

data 

Test 
different 

algorithms

Assess your 
results

Sell your 
work

Put your 
model in 

production80% of the ML project time

20% of the ML project time



Well-posed problem

• This is tough, and highly important for the following steps, 
including the type of approach to use (supervised / 
unsupervised).

• You need to get to a very precise question you want to adress 
using ML

• otherwise you’ll never know or you’ll never be able to say 
STOP

• Unless you are fully autonomous on your project, make sure you 
have everyone on-board at this step (your boss, your colleagues, 
the Other Team, your client...)



Get raw data
• You know it, they can be anywhere and issues can be endless

• in poorly formatted logs on cloud FS

• in a «limited access» drive or directory

• in a slave (or better production) SQL DB that doesn’t like to be queried

• in a KV or document store

• in HDFS

• in an Excel spreadsheet, hopefully in a wonderful format (merged / hidden cells, 
pivoted columns, split tables... Open data anyone ?)

• at the end of an undocumented API

• Just don’t underestimate this step, this can be tricky and time-
consuming

• Usually, start with what you have at hand first and add more data later



Create good-looking data

• Most of the time you’ll need to build a fully denormalized, «flat» data 
structure to run the ML algorithms

• a matrix storing in columns all the attributes / inputs (the Features vector)  of a given 
record (a sample or an observation), and optionnally another column storing the 
value you want to predict (the Label)

• Features Engineering is key

• ultimately this is what will make the difference

• be ready to be creative

• be ready for a time and resource consuming session (large scale joins and 
agregations...), this is where frameworks such as Hadoop can come into play. 

User ID User Age
User Email 

Domain User Postal Code
Postal Code mean 

revenue
Nb searches last 

months
Nb Clicks last 

week
Nb Purchases 

lifetime
Nb Searches last 

day
Did purchase 

last week

1 19 Gmail.com 57280 18657.45 1 1 3 0 0

2 32 Facebook.com 6293 23952.5 39 32 8 1 1



Better data > clever maths ©

• Did I mention that Features Engineering is key ?

• If you miss the really important features in your dataset, you’ll 
probably never reach your goal to build a good model, and using 
fancy algorithms won’t help that much. 

• This is where Big Data (and one of its 3, 4, more ? V’s) come into 
play:  Variety. 

• Using large datasets with granular data coming from various 
sources will allow us to build a richer set of features



Get to know your data

• Your dataset will be messy, so once you have a first working 
version, it is very important to understand it first, by:

• creating statistics for each of your features (distribution ...)

• creating joint statistics between each feature and the labels in case of 
supervised learning

• looking at correlations between features 

• see your dataset as a whole using techniques such a PCA 

• data visualisation helps a lot at this step !

• This will also allow to understand how much messy is the data, 
and eventually deal with theses cases:

• missing values

• long-tailed distribution

• outlying values...



And if this didn’t make you 
nut, you can start ML



Be ready to fight overfitting

• What we are loking for is a model that has a good generalization 
property, i.e, how confident we are in its capacity to deal with 
new, unknown data.

• A model could be very good at training time, but fail miserably to predict 
new observations: it overfitted (i.e it learned to well on a dataset and now is 
unable to predict a new one). 

• Always keep at least one portion of your initial dataset in a 
separate sample that will not be used to train the model, but 
only to test its real accuracy and capacity of generalization. 

• This is Cross Validation !

• Or at least just one approach to CV, since many strategies exist, sharing all 
the same principle of keeping an holdout sample. 



Build a baseline model quick

• Go fast with the creation of your first model that will be used to 
benchmark your future iterations. 

• simple in terms of algorithm (it can be a simple but fast to 
train linear model, or even simple logic like a pure 
randomness in prediction)

• simple in terms of features included

• This way you get a taste of where you are heading to, for 
instance in you obtain very poor performances it might be a 
good idea to rethink the Features Engineering process.



Try several algorithms

• There are literally hundreds of algorithms, both for supervised 
and unsupervised, and (I guess) nobody has yet the answer to 
«what is the best algorithm ? »

• it is highly dependant on your dataset

• but be aware that each method has its own limitations

• A bit of name dropping:

Unsupervised Supervised

K-Means
Hierarchical Clustering

Gaussian Mixtures
DBSCAN

Mean Shift...

Linear Models (OLS, Logistic, Ridge, Lasso)
Support Vector Machines

KNN
Naive Bayes

Decision Trees
Neural Nets

Tree-based ensemble (Random Forest, Gradient 
Boosted Trees...)



Measure carefully your results

PredictedPredicted
Negative Positive

Actual
Negative TN FP

Actual
Positive FN TP

• Make sure you use your holdout sample to measure the accuracy of your model 
(for supervised learning). 

• Several metrics are available and depends on your task. Common metrics for 
classification for instance:

• Accuracy: % of correct predictions (TN + TP) / size of the sample

• Recall: % of positive cases catched (TP / (TP+FN)) and Precision: % of positive cases correct (TP / (TP
+FP))

• Beware, that can be highly misleading for unbalanced samples ! (see other methods like ROC curve or 
gain charts)

• You may also want to use graphical outputs to assess your model performance



Don’t reinvent the wheel (at first)

• You can use existing software, at least to begin with, when doing 
a machine learning project to get faster to results. 

• The most common language is R, and while the learning curve might be steep 
and the performances not very high (but that highly depends on 
implementations), basically all methods are ported to R and there are several 
nice plotting libraries. 

• Python is also gaining momentum, notably because of the very nice Scikit-learn 
library. 

• When the scale of your data requires it, you can use MR based 
frameworks such as Mahout (Hadoop) or MLBase (Spark), or 
deploy the algorithms within your DB if it supports it (MADLib, 
or dedicated SDK’s for MPP db’s - Vertica, Greenplum, Netezza...)

• but are your sure you really need a distributed version of the algorithm ? 



Communicate the results

• This is especially true when you’re not building a new piece of 
software, but rather a prelimiary study or proof-of-concept. 

• You’ll need to get the buy-in of «business» users by :
• share frequently the results of your iterations on the model

• show visual outputs

• be transparent with the assumptions you made (data used, features build, 
models used...)

• build simple apps to let the users «play» with your model themselves, if 
applicable

• assess or help them assess the potential impact on the business (some sense 
of ROI)

• Don’t forget that correlations do not imply causation



Productionalize

• Cool, your ML project has been adopted !

• Now what ? 

• I hope you didn’t forget to serialize your model somewhere or to make it 
reusable !

• Not as easy as it seems: how will it be used ? Real-time (aka a production 
application gets live predictions from an API), batch (you can produce the 
predictions every month/week/hour... for the whole base) ? 

• You’ll need to be able to reproduce the whole modeling steps, including the 
preprocessing steps to make sure each new «scored» observation is inline with 
your ML project. 

• You’ll probably need to keep track and monitor how the model behaves over 
time, and know when it’s time to retrain it again. 



Data Scientist is the 
sexiest job of the 21st 

century ©

Yes, but that’s no free lunch :)



http://dataiku.com/

contact@dataiku.com


