

Usability

Stephen Colebourne
Member of technical staff
OpenGamma Ltd

The great frontier
● Lots of new APIs
● Lots of new languages
● But not all are very usable
● Why is that?

Usability affects everyone!

Everyone
● Lets assume we're all clever
● Lets assume we're all highly capable
● If so, then we can learn and deal with complexity
● But it takes time and effort
● Wouldn't simple and usable be even better?

Git
● I don't especially like Git
● Consensus that it is generally good technically
● Consensus that it is generally hard to use
● For me, the (lack of) usability is more important

than the technical ability
● At OpenGamma, we pay for SmartGit GUI

– much better usability (though not perfect)

Why is Git hard?
● Names of commands
● Error messages
● Complex underlying model

Mental models
● Mental models are how we view the world
● Once we've built one its hard to change
● Relate new concepts to what we know already
● eg. version control (CVS/SVN)

– work locally
– when ready, commit to shared repo
– then everyone can see the work

● Git isn't really like this
– it has a much larger set of concepts

Git makes me feel stupid!

Coping strategies
● We sometimes develop strategies to cope
● Allow us to work with problem system
● eg. for Git

– "always commit before pulling"
– "use a pretty GUI"
– "treat it like SVN with extra steps"

● But never get to understand Git's model
– non-standard tasks become major problem
– eg. merging two forks

Coping strategies
● What if you didn't understand anything deeply?
● What if each task was a coping strategy?
● More common than you might think?

Generics
● Explain what this means:

public class Enum<E extends Enum<E>>
 implements Comparable<E> {
}

Generics
● Explain what this means:

public static
 <T> void copy(List<? super T> dest,
 List<? extends T> src) {
}

Generics
● Explain what this means:

public static
 <T extends Object & Comparable<? super T>>
 T min(Collection<? extends T> coll) {
}

Why is generics hard?
● No wildcards in Generics until last minute
● Implementation proven too complex
● Life without wildcards is simpler

Number[] nums = new Number[3];
Object[] objs = nums;
Integer[] ints = nums;
// get runtime error if necessary

Who understands generics?
● How many people on the entire planet

understand them fully?
● Very, very few
● I find that concerning, do you?

● The rest of us use coping strategies
● Mine is trial and error

Generics makes me feel stupid!

So how did generics happen?
● The experts that designed them were clever
● They understood the problem
● They could discuss and trade off the issues
● But who asked the awkward question

– "is it usable by people outside this room"?
● If it was asked, they got the wrong answer

Its not that developers are stupid!
● No programmer is stupid
● We've all got skills and ability
● But we are frequently lazy
● We only learn what we need to
● Given a wildcard/variance problem, it is

possible to explain it to a developer, and they
will understand

● But they will typically forget within a few hours
as its not interesting to them, or its not relevant
to their main assigned task

Scala
● What does this code do?

def foo[A](list : List[A]): List[A] =
 list.foldLeft(List[A]())((r,c) => c :: r)

Scala
● What does this code do?

def foo(val : Int): Int = {
 val *= 30
 val = (val / 2) + 7
 - (6 * 2)
}

Scala
def bar[A](list : List[A]): List[(A,int)] =
 list.foldLeft(List[(A,int)]()) {(r,c) =>
 r match {
 case (v,t) :: tail =>
 if (v == c) (c,t+1) :: tail
 else (c,1) :: r
 case Nil =>
 (c,1) :: r
 }
}.reverse

Scala
● I don't like Scala
● Its a big missed opportunity
● Good technical stuff
● Consistent reports of being hard to use
● Also hard to write an IDE for

Scala
● Collection library very complex
● Method signatures so complex that

documentation had to be extended to give
simpler examples

● Very different style to Java
– Functional emphasised
– But being sold by some as next Java

Scala
● Scala tackles technical challenges

– parallel collections
– functional
– define a boolean using the language
– turing complete generics

● Fails to tackle basic productivity issues
– modules
– built in immutability
– pain of handling null

Fantom
● What does this code do?

Str:Int foo(Str[] strs) {
 res := Str:Int[:]
 strs.each {
 res[it] = res[it]?.increment ?: 1
 }
}

Fantom
● Tackles real developer challenges

– Modules
– Immutability
– No shared state
– Nullable types

● Not quite enough power or use of type system
for my taste

New language
● Take a piece of reasonably complex code
● Give it to a mid-level developer
● Someone not interested in new languages
● Can they understand the code
● No training, no help

Examine some Java

/**
 * Copyright 2009 FooBar Ltd.
 *
 * Licensed under the Apache License v2
 */
...

Examine some Java
header {
 copyright: FooBar Ltd.
 copyrightYears: 2009
 licenseName: ApacheLicense
 licenseVersion: 2
}
...

Examine some Java
/**
 * Creates a money.
 * @param currency the currency, not null
 * @param amount the amount, null means 0
 * @return the currency, not null
 */
Money create(Currency c, Decimal bd)

Examine some Java
/**
 * Creates a money.
 */
Money create(Currency c, Decimal? bd = 0)

Examine some Java

List<String> filt(Map<String, Integer> m) {
 List<String> res=new ArrayList<String>();
 for (Entry<String, Integer> e : m) {
 if (e.getValue() > 20) {
 res.add(e.getKey());
 }
 }
 return res;
}

Examine some Java

String[] filt(Integer[String] m) {
 var res = String[]();
 loop (key, val : m) if (val > 20) {
 res.add(key);
 }
 return res;
}

Questions

Stephen Colebourne
Member of technical staff
OpenGamma Ltd

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34

