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The great frontier
● Lots of new APIs
● Lots of new languages
● But not all are very usable
● Why is that?



  

Usability affects everyone!



  

Everyone
● Lets assume we're all clever
● Lets assume we're all highly capable
● If so, then we can learn and deal with complexity
● But it takes time and effort
● Wouldn't simple and usable be even better?



  

Git
● I don't especially like Git
● Consensus that it is generally good technically
● Consensus that it is generally hard to use
● For me, the (lack of) usability is more important 

than the technical ability
● At OpenGamma, we pay for SmartGit GUI

– much better usability (though not perfect)



  

Why is Git hard?
● Names of commands
● Error messages
● Complex underlying model



  

Mental models
● Mental models are how we view the world
● Once we've built one its hard to change
● Relate new concepts to what we know already
● eg. version control (CVS/SVN)

– work locally
– when ready, commit to shared repo
– then everyone can see the work

● Git isn't really like this
– it has a much larger set of concepts



  

Git makes me feel stupid!



  

Coping strategies
● We sometimes develop strategies to cope
● Allow us to work with problem system
● eg. for Git

– "always commit before pulling"
– "use a pretty GUI"
– "treat it like SVN with extra steps"

● But never get to understand Git's model
– non-standard tasks become major problem
– eg. merging two forks



  

Coping strategies
● What if you didn't understand anything deeply?
● What if each task was a coping strategy?
● More common than you might think?



  

Generics
● Explain what this means:

public class Enum<E extends Enum<E>>
 implements Comparable<E> {
}



  

Generics
● Explain what this means:

public static
 <T> void copy(List<? super T> dest,
               List<? extends T> src) {
}



  

Generics
● Explain what this means:

public static
 <T extends Object & Comparable<? super T>> 
   T min(Collection<? extends T> coll) {
}



  

Why is generics hard?
● No wildcards in Generics until last minute
● Implementation proven too complex
● Life without wildcards is simpler

Number[] nums = new Number[3];
Object[] objs = nums;
Integer[] ints = nums;
// get runtime error if necessary



  

Who understands generics?
● How many people on the entire planet 

understand them fully?
● Very, very few
● I find that concerning, do you?

● The rest of us use coping strategies
● Mine is trial and error



  

Generics makes me feel stupid!



  

So how did generics happen?
● The experts that designed them were clever
● They understood the problem
● They could discuss and trade off the issues
● But who asked the awkward question

– "is it usable by people outside this room"?
● If it was asked, they got the wrong answer



  

Its not that developers are stupid!
● No programmer is stupid
● We've all got skills and ability
● But we are frequently lazy
● We only learn what we need to
● Given a wildcard/variance problem, it is 

possible to explain it to a developer, and they 
will understand

● But they will typically forget within a few hours 
as its not interesting to them, or its not relevant 
to their main assigned task



  

Scala
● What does this code do?

def foo[A](list : List[A]): List[A] =
 list.foldLeft(List[A]())((r,c) => c :: r)



  

Scala
● What does this code do?

def foo(val : Int): Int = {
  val *= 30
  val = (val / 2) + 7
   - (6 * 2)
}



  

Scala
def bar[A](list : List[A]): List[(A,int)] =
 list.foldLeft(List[(A,int)]()) {(r,c) =>
  r match {
   case (v,t) :: tail =>
    if (v == c) (c,t+1) :: tail
    else (c,1) :: r
   case Nil =>
    (c,1) :: r
  }
}.reverse



  

Scala
● I don't like Scala
● Its a big missed opportunity
● Good technical stuff
● Consistent reports of being hard to use
● Also hard to write an IDE for



  

Scala
● Collection library very complex
● Method signatures so complex that 

documentation had to be extended to give 
simpler examples

● Very different style to Java
– Functional emphasised
– But being sold by some as next Java



  

Scala
● Scala tackles technical challenges

– parallel collections
– functional
– define a boolean using the language
– turing complete generics

● Fails to tackle basic productivity issues
– modules
– built in immutability
– pain of handling null



  

Fantom
● What does this code do?

Str:Int foo(Str[] strs) {
 res := Str:Int[:]
 strs.each {
  res[it] = res[it]?.increment ?: 1
 }
}



  

Fantom
● Tackles real developer challenges

– Modules
– Immutability
– No shared state
– Nullable types

● Not quite enough power or use of type system 
for my taste



  

New language
● Take a piece of reasonably complex code
● Give it to a mid-level developer
● Someone not interested in new languages
● Can they understand the code
● No training, no help



  

Examine some Java

/**
 * Copyright 2009 FooBar Ltd.
 * 
 * Licensed under the Apache License v2
 */
...



  

Examine some Java
header {
  copyright: FooBar Ltd.
  copyrightYears: 2009
  licenseName: ApacheLicense
  licenseVersion: 2
}
...



  

Examine some Java
/**
 * Creates a money.
 * @param currency  the currency, not null
 * @param amount  the amount, null means 0
 * @return the currency, not null
 */
Money create(Currency c, Decimal bd)



  

Examine some Java
/**
 * Creates a money.
 */
Money create(Currency c, Decimal? bd = 0)



  

Examine some Java

List<String> filt(Map<String, Integer> m) {
 List<String> res=new ArrayList<String>();
 for (Entry<String, Integer> e : m) {
  if (e.getValue() > 20) {
   res.add(e.getKey());
  }
 }
 return res;
}



  

Examine some Java

String[] filt(Integer[String] m) {
 var res = String[]();
 loop (key, val : m) if (val > 20) {
  res.add(key);
 }
 return res;
}
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