

Time to improve: JSR-310

Stephen Colebourne
Member of technical staff
OpenGamma Ltd

http://www.flickr.com/photos/fdecomite/406635986/

Agenda
● Problems today
● Joda-Time
● JSR-310

// function to get current Hong Kong time
public class DatePrinter implements Supplier<Calendar> {
 private static final TimeZone HONG_KONG =
 TimeZone.getTimeZone("Asia/HongKong");
 public Calendar get() {
 return new GregorianCalendar(HONG_KONG);
 }
}

What is wrong?

// function to get current Hong Kong time
public class DatePrinter implements Supplier<Calendar> {
 private static final TimeZone HONG_KONG =
 TimeZone.getTimeZone("Asia/HongKong");
 public Calendar get() {
 return new GregorianCalendar(HONG_KONG);
 }
}

What is wrong?

Wrong time zone
identifier

// function to get current Hong Kong time
public class DatePrinter implements Supplier<Calendar> {
 private static final TimeZone HONG_KONG =
 TimeZone.getTimeZone("Asia/Hong_Kong");
 public Calendar get() {
 return new GregorianCalendar(HONG_KONG);
 }
}

Fixed

// function to convert a calendar to a string
public class DatePrinter
 implements Function<Calendar, String> {
 private static final DateFormat FORMAT =
 new SimpleDateFormat("d MMM yyyy");
 public String apply(Calendar cal) {
 return FORMAT.format(cal);
 }
}
// using function to convert a collection of calendars
Collection<Calendar> cals = ...
DatePrinter printerFn = new DatePrinter();
Collection<String> strs = transform(cals, printerFn);

What is wrong?

// function to convert a calendar to a string
public class DatePrinter
 implements Function<Calendar, String> {
 private static final DateFormat FORMAT =
 new SimpleDateFormat("d MMM yyyy");
 public String apply(Calendar cal) {
 return FORMAT.format(cal);
 }
}
// using function to convert a collection of calendars
Collection<Calendar> cals = ...
DatePrinter printerFn = new DatePrinter();
Collection<String> strs = transform(cals, printerFn);

What is wrong?

SimpleDateFormat
is not thread-safe

// function to convert a calendar to a string
public class DatePrinter
 implements Function<Calendar, String> {
 private static final DateFormat FORMAT =
 new SimpleDateFormat("d MMM yyyy");
 public String apply(Calendar cal) {
 return FORMAT.format(cal);
 }
}
// using function to convert a collection of calendars
Collection<Calendar> cals = ...
DatePrinter printerFn = new DatePrinter();
Collection<String> strs = transform(cals, printerFn);

What is wrong?

Cannot format
Calendar directly

// function to convert a calendar to a string
public class DatePrinter
 implements Function<Calendar, String> {
 public String apply(Calendar cal) {
 DateFormat f = new SimpleDateFormat("d MMM yyyy");
 f.setTimeZone(cal.getTimeZone());
 Date instant = cal.getTime();
 return f.format(instant);
 }
}
// using function to convert a collection of calendars
Collection<Calendar> cals = ...
DatePrinter printerFn = new DatePrinter();
Collection<String> strs = transform(cals, printerFn);

Fixed

Existing API flaws
● Mutable
● January is 0, December is 11
● Date is not a date
● Date uses years from 1900
● Calendar cannot be formatted
● DateFormat not thread-safe
● SQL Date/Time/Timestamp extend Date

Fresh start

http://www.flickr.com/photos/bortescristian/2346040486/

Joda-Time
● In 2002, needed a better way to handle dates

– to convert to and from strings
● Created new library: Joda-Time
● Released as v1.0 in 2005
● http://joda-time.sourceforge.net
● Open source – Apache 2 license

http://joda-time.sourceforge.net/

JSR-310
● Joda-Time very popular

– but still an external library
● Need to enhance the JDK
● JSR-310 created
● http://jsr-310.dev.java.net
● Open source – BSD (3 clause) license

http://jsr-310.dev.java.net/

Why not just adopt JSR-310?
● Joda-Time has design flaws

– Instant/Partial definitions not well chosen
– deeply embedded time zone very tricky
– hard to maintain/enhance existing code
– questions over IP

● Feedback from Joda-Time to address
– want best API we can get
– some new requirements

Why is it taking so long?
● More complex than expected
● Only working in evenings and weekends

– also have a life outside Java!
– now have some support from OpenGamma

● Target is JDK 8 (JDK 7 part 2)

JSR-310 overview
● Comprehensive model for date and time
● Type-safe

– avoid primitives where sensible
– self documenting
– IDE friendly

● Interoperate with existing classes
● Consider XML and Database

Design principles
● Guide design
● Help decision making
● Derived from other libraries
● Derived from experience

Principles: Immutable
● No change after construction
● Thread-safe
● Can be singletons

● Implementation considerations
– classes and fields are final
– construction typically by factory
– 'with' methods instead of 'set'

Principles: Fluent
● Easy to read
● Easy to learn
● Like a sentence

● Implementation considerations
– builder pattern
– method names that 'flow'

Principles: Clear, explicit, expected
● Each method is well-defined
● Javadoc easily explains what method does
● No coupling between methods

● Implementation considerations
– few super/subclasses
– no optional/pluggable state
– long/complex javadoc → refactor

Principles: Extensible
● Many weird ways to manipulate time
● JSR authors don't know everything
● Allow for extensions, but avoid confusion

● Implementation considerations
– strategy pattern
– default strategy for most use cases
– clear javadoc of default

Concepts

http://www.tagxedo.com

Two core requirements

http://www.flickr.com/photos/jurvetson/4403205290/ http://www.flickr.com/photos/kyz/2502624283/

Continuous and Human
● Two basic time-scales

– way of 'counting' time

● Continuous
– single incrementing number
– designed for machines

● Human
– field-based
– year,month,day,hour,minute,second

Instant
● Single instantaneous point on the time-line

– 27452754876 nanoseconds after the epoch
● Used to store a timestamp
● Nanosecond precision for age of universe

– problem – no suitable primitive – 96 bits
● Java class – Instant

Instant

Time-line

Duration
● Duration of time

– 3762876468 nanoseconds
● Quantity

– not connected to the time-line
● Nanosecond precision
● Java class – Duration

Time-line
Duration

Examples
// instant
Instant start = Instant.ofMillis(123450L);
Instant end = Instant.nowSystemClock();
assert start.isBefore(end);
assert end.isAfter(start);
// duration
Duration duration = Duration.ofSeconds(12);
Duration bigger = duration.multipliedBy(4);
Duration biggest = bigger.plus(duration);
// combination
Instant later = start.plus(duration);
Instant earlier = start.minus(duration);

Accuracy and Leap seconds

http://leapsecond.com/notes/leap-watch.htm

Accuracy
● 24 hours of 60 minutes of 60 seconds

– 86400 seconds per day
● No!
● Second defined by atomic-level transitions
● Day measured by astronomers
● Length of day varies slightly

– partly due to Earth slowing down
● Most real days slightly longer than 86400 secs

Time scales
● TAI

– simple count of atomic seconds from 1958-01-01
– no concept of days/leap seconds

● UT1
– follows Earth rotation as closely as possible
– defines days

● UTC
– leap seconds ensure |UT1 – UTC| < 0.9
– leap second has time of 23:59:60
– UTC started properly on 1972-01-01

Java millis
● Java counts milliseconds from 1970-01-01
● What does this mean?
● Definition unclear!
● UTC only started properly at 1972-01-01

– 1970-01-01 start point is very inconvenient
● Definition also assumes 86400 secs per day

– what happens around leap seconds?

Approach taken
● Fully define Java epoch of 1970-01-01
● Avoid leap seconds in most classes
● Have dedicated classes for TAI and UTC

– TAIInstant and UTCInstant
● Define the 86400 second day as UTC-SLS

– this spreads any leap second over 1000 seconds
prior to the leap second

● Compromise between usability and accuracy

Human scale

http://www.flickr.com/photos/tico24/16673698/

Human scale overview
● Human-scale dates and times

– field based
– year, month, day, hour, minute, second

● Requirements
– Date and time
– Date without time
– Time without date
– Time zone

ISO-8601
● Standard interchange format
● Basis for other standards

– XML schema
● Includes

– date
– time
– date-time
– zone offset (from UTC)
– period

ISO-8601 examples
● yyyy-MM-dd

– 2010-12-03

● hh:mm:ss.SSSZ
– 11:05:30+01:00

● yyyy-MM-dd'T'HH:mm:ss.SSSZ
– 2010-12-03T11:05:30+01:00

Analysing ISO-8601
● Start from ISO-8601

– yyyy-MM-dd'T'HH:mm:ss.SSSZ
● Generalise

– {date}T{time}{offset}
● Date – year, month, day
● Time – hour, minute, second, nanosecond
● Offset – from +14:00 to -12:00

Design
● {date}T{time}{offset}
● One class for each part

– LocalDate
– LocalTime
– ZoneOffset

● One class for each combination
– LocalDateTime: LocalDate + LocalTime
– OffsetDate: LocalDate + ZoneOffset
– OffsetTime: LocalTime + ZoneOffset

Design
● Extend design to parts of a date

– Year
– YearMonth
– MonthDay
– MonthOfYear – Enum
– DayOfWeek – Enum

Basic querying
● Query date/time using 'get' methods
● Method returns best type for the field

– primitive int for most fields
– enum for month-of-year/day-of-week

LocalDate date = LocalDate.of(2010, 12, 3);
int year = date.getYear();
MonthOfYear month = date.getMonthOfYear();
boolean leap = date.isLeap();

Basic updates
● Almost all classes are immutable
● User 'with' method instead of 'set'

– original object not changed
– need to assign return value

LocalDate date = LocalDate.of(2010, 12, 3);
LocalDate later = date.withYear(2011);
LocalDate between = date.with(MonthOfYear.MAY);

Matchers
● More complex queries use matchers

– is the year 2006 ?
– is the date the last day of the year ?

public interface CalendricalMatcher {
 boolean matchesCalendrical(Calendrical input);
}
boolean matches = date.matches(Year.of(2006));
boolean matches = date.matches(lastDayOfYear());

Adjusters
● More complex alterations use adjusters

– change date to the last day of month
– change date to 3rd Friday of next month

public interface DateAdjuster {
 LocalDate adjustDate(LocalDate input);
}
LocalDate adjusted = date.with(lastDayOfMonth());
LocalDate adjusted = date.with(next3rdFriday());

Resolvers
● Need to handle invalid dates

– 31st January plus one month
– throw exception? pick a date?

● Strategy pattern – DateResolver
public interface DateResolver {
 LocalDate resolveDate(
 int year, MonthOfYear month, int day);
}
DateResolver res = DateResolvers.previousValid();
LocalDate date = date(2010, 2, 30, res);
// date = 2010-02-28

Time zones

http://www.flickr.com/photos/estevesm/473866656/

Time zone overview
● World is divided into various time zones
● Zones are political rules defining local time

– Syria changed DST with 3 days notice
– Western Australia has 3 year DST experiment
– Brazil changes DST every year
– Egypt has two DST periods this year

● Rule defines changes in the UTC offset
– "In the winter, France will be 1 hour ahead of UTC,

while in the summer it will be 2 hours ahead. The
cutover is on the last day of March and October"

Time zone analysis
● Multiple groups provide rules

– "Timezone database" (TZDB)
– Windows
– IATA

● Each group defines own id
– TZDB uses 'Europe/London' for UK

● Rules include DST and permanent changes
● Rules define how and when offset changes

Time zone design
● JDK javadoc:

– “TimeZone represents a time zone offset,
 and also figures out daylight savings”

● JSR-310 separates responsibility
– ZoneOffset – from +14:00 to -12:00
– ZoneRules – rules for switching zone offsets
– TimeZone – handles rule changes over time

● Only one additional date-time class
– ZonedDateTime

Zone resolvers
● Need to handle invalid time due to time zones

– Spring Daylight Savings 'gap'
– Autumn/Fall Daylight Savings 'overlap'

● Strategy pattern – ZoneResolver
// one day before DST ends (overlap of one hour)
TimeZone zone = TimeZone.of("Europe/London");
ZonedDateTime dt = ZonedDateTime.of(2010,10,27,1,30,zone);
// dt = 2010-10-27 01:30 +01:00
ZoneResolver res = ZoneResolvers.retainOffset();
dt = dt.plusDays(1, res);
// dt = 2010-10-28 01:30 +01:00

Time zone updates
● Rules change while JVM is running
● Create date-time using rules version 2010e
● Now update the rules to version 2010f
● What happens?

● ZonedDateTime can either be:
– locked to a specific version
– use the latest rules valid for the date-time

Full access
● Is a time in a gap or overlap?
● Ask the rules...

TimeZone zone = TimeZone.of("Europe/London");
LocalDateTime ldt = LocalDateTime.of(2010,10,27,1,30);
ZoneOffsetInfo info = zone.getRules().getOffsetInfo(ldt);
if (info.isTransition()) {
 ZoneOffsetTransition transition = info.getTransition();
 if (transition.isGap()) { ... }
}

Full access
● Did DST rules change in last rules version?
● Ask the rules...

// get old and new versions of the zone
TimeZone oldZone = TimeZone.of("Europe/London#2010e");
TimeZone newZone = TimeZone.of("Europe/London#2010f");
// check if rules are the same
if (oldZone.getRules().equals(newZone.getRules())) {
 ...
}

Class summary
● LocalDate 2010-12-03
● LocalTime 11:05:30
● LocalDateTime 2010-12-03T11:05:30
● OffsetDate 2010-12-03 +01:00
● OffsetTime 11:05:30+01:00
● OffsetDateTime 2010-12-03T11:05:30+01:00
● ZonedDateTime 2010-12-03T11:05:30+01:00 Europe/Paris

Integration

http://www.flickr.com/photos/oskay/265899811/

Integration via interfaces
● Simple interfaces link everything

– DateProvider
– TimeProvider
– DateTimeProvider
– InstantProvider

● Each provides one method
– toLocalDate()
– toLocalTime()
– toLocalDateTime()
– toInstant()

Date/time integration

ZonedDateTime OffsetDateTime LocalDateTime

LocalTime

DateTimeProvider

DateProvider

OffsetDate OffsetTimeLocalDate

TimeProvider

Date/time integration

ZonedDateTime OffsetDateTime LocalDateTime

LocalTime

DateTimeProvider

DateProvider

OffsetDate OffsetTimeLocalDate

TimeProvider

java.util.
GregorianCalendar

java.sql.Date java.sql.Time

Instant integration

ZonedDateTime OffsetDateTime

InstantProvider

Instant

Instant integration

ZonedDateTime OffsetDateTime

InstantProvider

Instant java.util.Date

Integration: Existing JDK classes
● Plan that JDK date/time classes will:

– implement JSR-310 interfaces
– be constructable from JSR-310 interfaces
– not be deprecated

● Plan that JSR-310 classes will:
– not reference the old JDK date/time classes

Integration: Databases
● JDBC group represented on JSR-310
● Classes map onto SQL

– LocalDate DATE
– LocalTime TIME WITHOUT TIME ZONE
– LocalDateTime TIMESTAMP WITHOUT TIMEZONE
– OffsetTime TIME WITH TIME ZONE
– OffsetDateTime TIMESTAMP WITH TIME ZONE

● Open issue on time zone mapping
– DB time zone id differs from Java

Integration: XML
● XML opinions represented on JSR-310
● Classes map onto XML

– ReadableDate xs:date
– ReadableTime xs:time
– ReadableDateTime xs:datetime
– YearMonth xs:gYearMonth
– MonthDay xs:gMonthDay
– Year xs:gYear
– MonthOfYear xs:gMonth
– DayOfMonth xs:gDay

Integration: Joda-Time
● Many similar concepts in Joda-Time
● Plan to release Joda-Time version that

implements JSR-310 interfaces

Periods

http://www.flickr.com/photos/sundaykofax/4563411538/

Periods
● Describe duration in human fields

– 6 years, 2 months and 12 days
● Use cases

– meeting length – 2 hours
– conference length – 5 days
– pregnancy – 9 months

Periods
● Period class represents a period

– fields for years, months, days, hours, minutes,
seconds and nanoseconds

● Can be added or subtracted from date/time

Calendar systems

http://www.flickr.com/photos/mike23/12493881/

Calendar systems
● Everything based on ISO-8601

– current 'civil' calendar
– not historically accurate

● Requirements
– support common calendars in JDK
– not overcomplicate main use case
– no ambiguity in API

Calendar systems
● Simple classes for other calendars

– HebrewDate
– HijrahDate
– JapaneseDate
– ThaiBuddhistDate
– and so on

● Subclass Object
● Implement DateProvider
● Construct from DateProvider

Current time

http://www.flickr.com/photos/carbonnyc/2563369930/

Current time
● Affected by time zone

– often forgotten

● Requirements
– stop time for test case
– change to time in future/past
– run time slowly

Current time
● Access current time using an object

– avoid singleton
– Inversion of Control

● Anyone can implement a subclass
– you can control time

// system millis, default time zone
Instant instant = Instant.now(Clock.system());
LocalDate date = LocalDate.now(Clock.system());
// system millis, specified time zone
TimeZone zone = TimeZone.of("Europe/Moscow");
LocalDate date = LocalDate.now(Clock.system(zone));

Current time
● Supports Inversion of Control

– inject Clock
– could be a 'stop time' subclass for testing

public class MyForm {
 @Inject
 private Clock clock; // inject with Spring/Guice/etc
 public void validate(LocalDate date) {
 if (date.isBefore(LocalDate.now(clock))) {
 // error
 }
 }
}

Formatting and Parsing
● ISO-8601 returned by toString()
● Formatting/parsing supports patterns

– like SimpleDateFormat
– also more advanced formats

● Main class is DateTimeFormatter

Low level API
● Low level API provided for detailed work
● Extra support on a per field basis

– Calendrical
– DateTimeFieldRule

● More powerful support for periods
– PeriodFields
– PeriodUnit

● Especially suited for frameworks

http://www.flickr.com/photos/jlcarmichael/4451266849/

Summary
● Current JDK date/time has problems

– Joda-Time is the best current alternative
● JSR-310 draft API continues to evolve

– instant
– duration
– date/time
– period
– formatting/parsing
– multiple calendar systems
– control over current time

Summary
● JSR-310 is open...

...very open!

● Help make sure this date/time API works!
– join the mailing list
– comment on the wiki
– review the API – javadoc or svn

● http://jsr-310.dev.java.net

	Diapo 1
	Diapo 2
	Diapo 3
	Wrong Q1
	Diapo 5
	Diapo 6
	Wrong Q2
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Summary

